The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X 2 X 0 X 2 X X X 2X X 2X+2 X X X X 1 2X 2X+2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 2X+2 0 X X 2X+2 2X+2 2X+2 0 2X 2X 2X+2 X X 2 2 X 2X+2 2X+2 2X X X 0 X 2X 1 2X+2 1 0 X 2 3X+2 0 3X+2 2 3X 2X X+2 2X+2 3X 2X X+2 2X+2 X 0 3X+2 2 3X 0 3X+2 2 3X 2X X+2 2X+2 X 2X X+2 2X+2 X 3X+2 X 3X X 3X+2 X 3X X 0 X+2 2 X X X 2X 2X+2 X+2 X 0 X X 2 3X+2 3X 2X 2X+2 X+2 X 0 2 2X 2X+2 3X+2 3X X+2 X 0 2 2X 2X+2 2 2X+2 3X+2 X+2 2X+2 0 2X X X 2X+2 2X+2 3X X X X X+2 X X 2X+2 3X X X 3X+2 X 0 2X 0 0 0 2X 2X 2X 0 0 2X 2X 2X 0 0 0 0 2X 2X 0 0 2X 2X 2X 2X 0 0 2X 2X 0 0 0 0 2X 2X 0 2X 2X 0 2X 0 0 2X 2X 2X 2X 0 0 2X 2X 2X 0 2X 0 2X 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 2X 2X 0 2X 0 2X 2X 0 2X 0 2X 0 0 2X 0 0 2X 0 2X 2X 2X 2X 2X 0 0 0 2X generates a code of length 99 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 98. Homogenous weight enumerator: w(x)=1x^0+128x^98+91x^100+32x^102+2x^104+1x^112+1x^116 The gray image is a code over GF(2) with n=792, k=8 and d=392. This code was found by Heurico 1.16 in 1.2 seconds.